Exercise Sheet 2

1. Let \(s \geq 3 \) be a fixed integer. Prove that there exists a constant \(c \) such that any \((n, d, \lambda)\)-graph \(G\) with \(\lambda \leq \frac{c^{d-1}}{n^{s-2}} \), contains a \(K_s \). Deduce that if \(\lambda = O(\sqrt{d}) \) in a \(K_s \)-free \((n, d, \lambda)\)-graph, then \(d = O\left(n^{1-\frac{1}{s-3}}\right) \).

2. Let \(S \) be a polar space of order \((s, t)\) on \(n \) points. Prove that the collinearity graph of \(S \) is a strongly regular graph and determine its parameters.\(^1\)

3. (a) Give an example of a non-degenerate symmetric bilinear form that contains totally isotropic points and lines, such that the partial linear space formed by them is a degenerate polar space.

(b) Prove that a quadratic form over a field of characteristic not equal to 2 is non-degenerate if and only if the bilinear form associated with it is non-degenerate.

(c) Give an example of a non-degenerate quadratic form \(Q \) such that the bilinear form \(\beta \) associated with it is degenerate.

4. A bilinear form \(\beta : V \times V \rightarrow F \), for some vector space \(V \) over \(F \), is called alternating if \(\beta(u, u) = 0 \) for all \(u \in V \). It is called non-degenerate if \(\beta(u, v) = 0 \) for all \(v \in V \) implies that \(u = 0 \).

(a) Show that if \(\beta \) is an alternating bilinear form then \(\beta(u, v) = -\beta(v, u) \) for all \(u, v \).

(b) Prove that the maximum vector space dimension of a totally isotropic subspace with respect to a non-degenerate alternating bilinear form over a vector space of dimension \(n + 1 \) is equal to \((n + 1)/2\), and hence deduce that \(n \) must be odd.

(c) Prove that the totally isotropic points and lines of \(PG(n, F) \) with respect to a non-degenerate alternating bilinear form over the underlying vector space \(F^{n+1} \), form a non-degenerate polar space. Also determine the order \((s, t)\) of this polar space if \(F = \mathbb{F}_q \).

5. Let \(\beta \) be a non-degenerate symmetric bilinear form over \(\mathbb{F}^5_q \), that gives a polarity \(\perp \) of \(PG(4, q) \) by mapping a point \(x \) to the hyperplane \(x^\perp = \{y \in PG(4, q) : \beta(x, y) = 0\} \). Let \(z \) be a point of \(PG(4, q) \) such that \(z \not\in z^\perp \), and let \(\mathcal{O} \) be an ovoid in \(z^\perp \cong PG(3, q) \).

\(^1\)Do not use the classification of polar spaces.
Define a graph G with vertex set equal to the set of points x in $\text{PG}(4, q) \setminus (z^\perp \cup \{z\})$ such that x lies on a line joining z and a point of O, and making two vertices x, y adjacent if $x \in y^\perp$.

(a) Determine the number of vertices n in G and show that the number of edges is $\Omega(n^{5/3})$.

(b) Prove that G does not contain any copies of the graph $K_{3,3}$.

(c) Use this graph to give a constructive lower bound of $r(5, t) = \Omega(t^{5/3})$.

6. The incidence graph of a point-line geometry (P, L) is the bipartite graph with parts P and L, with a point p adjacent to a line ℓ if it is contained in it. A generalized d-gon is a partial linear space whose incidence graph has diameter d and girth $2d$.

(a) Prove that the notion of generalized 4-gon is equivalent to generalized quadrangles defined in the course.

(b) Characterise the generalized 3-gons.

(c) Given examples of generalized 6-gons and 8-gons, whose incidence graphs are not C_{12} and C_{16}, respectively.

(d) (Bonus) Prove that there are no generalized 5-gons in which every line is incident with at least 3 points and every point is incident with at least 3 points.

7. Let S be a partial linear space of order (s, t) and F a simple graph which contains odd cycles such that all copies of F in the collinearity graph of S are contained in the cliques K_{s+1} corresponding to the lines. If the number of points in S is n and the number of lines is m, then prove that for any $k > \frac{m}{t+1-\log n}$, the Ramsey number $r(F, K_k)$ is greater than n. Use this, along with the existence of certain generalized 6-gons and 8-gons, to find good lower bounds on $r(C_5, K_k)$ and $r(C_7, K_k)$.

2In fact, the graph G is asymptotically the densest possible graph on n vertices that does not contain a $K_{3,3}$.

3Hint: randomly partition the points on each line into two parts.